10/21/08 California Department of Transportation Division of Engineering Services Materials Engineering and Testing Services 5900 Folsom Blvd. Sacramento, CA 95819-4612 #### APPROVED ADMIXTURES FOR USE IN CONCRETE The list of Approved Admixtures For Use In Concrete is published and updated periodically for reference primarily by Caltrans field personnel and others involved in Caltrans projects. As per State of California, Department of Transportation, Standard Specifications (July 1999), Section 90-4.03, no admixture brand shall be used in the work unless it is on Caltrans current list of approved brands for the type of admixture involved. Admixture brands will be considered for addition to the approved list if the manufacturer of the admixture submits to the Transportation Laboratory, 5900 Folsom Blvd., Sacramento, CA 95819-4612, a sample of the admixture accompanied by certified test results, which verify that the admixture complies with the requirements in the appropriate ASTM Designation. The sample shall be sufficient to permit performance of all required tests. Approval of admixture brands will be dependent upon a determination as to compliance with the specifications, based on the certified test results submitted, together with any tests the Department may elect to perform. Inquires regarding this list, are to be directed to Dr. Vijay Jain, (916) 227-7232; his email address is vijay_jain@dot.ca.gov. The Approved List includes only those admixtures that comply with the following ASTM designations: | C4 | 94 | - | Standard Specification for Chemical Admixtures for Concrete. | pp. 3 - 11 | |-----|-----|---|---|-------------| | C20 | 60 | - | Standard Specification for Air-Entraining Admixtures for Concrete. | pp. 12 - 13 | | C6 | 18 | - | Standard Specification for Fly Ash and Raw or Calcined Natural Pozzolan for use as a Mineral Admixture in Portland Cement Concrete. | pp. 14 - 15 | | C12 | 240 | | Standard Specification for use of Silica Fume as a Mineral Admixture in Hydraulic-Cement Concrete, Mortar and Grout | p. 16 | The list provides certain essential data for field reference as well as general information that may assist in assessing properties of the plastic concrete. The information contained herein, shall not to be used for advertising purposes, nor is it an endorsement by Caltrans. From ACI 212.1R, "Admixtures for Concrete" #### 5.2 - COMPOSITION The materials that are generally available for use as water-reducing admixtures and set-controlling admixtures fall into five general classes: - 1. Lignosulfonic acids and their salts - 2 Modifications and derivatives of lignosulfonic acids and their salts - 3. Hydroxylated carboxylic acids and their salts - 4. Modifications and derivatives of hydroxylated carboxylic acids and their salts - 5. Other materials, which include: - (i) inorganic materials, such as zinc salts, borates, phosphates, chlorides - (ii) amines and their derivatives - (iii) carbohydrates, polysaccharides, and sugar acids - (iv) certain polymeric compounds, such as cellulose ethers, melamine derivatives, naphthalene derivatives, silicones, and sulfonated hydrocarbons. These admixtures can be used either alone, or in combination with other organic or inorganic substances, active or essentially inert substances. #### NOTES: - * Chemical admixtures containing chlorides as Cl in excess of one percent by weight of admixture shall not be used in pre-stressed or reinforced concrete. - ** When the Contractor is permitted to reduce cement content by adding chemical admixtures, the dosage of admixture shall be the dosage used in ASTM Designation C494 for qualifying the admixtures. - *** This admixture contains more than 1% chlorides as determined by California Test 415 and shall not be used in prestressed or reinforced concrete. AE = Air Entrained NAE = Non-Air Entrained Type A - Water-reducing admixtures Type B - Retarding admixtures Type C - Accelerating admixtures Type D - Water-reducing and retarding admixtures $Type\ E\quad \text{-}\quad Water-reducing\ and\ accelerating\ admixtures}$ Type F - Water-reducing, high range admixtures Type G - Water-reducing, high range and retarding admixtures | | | | | | | alifying ASTM d
es are expected re
reference concre | lative to the | Dosage rate
suggested by
manufacturer | |-----------------|--------------|----------------------|---------------------------|---|-------------------------|---|--|---| | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | Axim Italcementi Group P.O. Box 234 8282 Middlebranch Road Middlebranch, OH 44652 Tel. No: (330) 966-0444 | Catexol
800N | B, D | Lignosulfonate | <1 | 4.3
(2002) | AE 8.8 | Less | AE 1.3 | 2.0 to 6.0 | |----------------------|------|-------------------------------------|----|----------------|---------|------|----------|--------------| | Catexol
1000R | B, D | Lignosulfonate | <1 | 2.5
(2001) | AE 5.9 | Less | AE 1.6 | 1.5 to 4.0 | | Catexol
1000 SPMN | F | Sulfonated Napthalene
Condensate | <1 | 10.0
(2000) | AE 13.1 | Less | AE (0.3) | 10.0 to 40.0 | | Superflux
2000 PC | F | Polycarboxylated
Polymer | <1 | 2.5
(2000) | AE 13.1 | Less | AE (0.2) | 3.0 to 10.0 | | Catexol
2000 RHE | C, E | Calcium Nitrate | <1 | 16.0
(2001) | AE 5.5 | More | AE 1.4 | 10.0 to 20.0 | BASF Admixtures, Inc. 23700 Chagrin Boulevard Cleveland, OH 44122 | Delvo | B, D | Salts of Organic | <1 | 4.0 | AE 7.8 | Less | AE 1.1 | 2.0 to 130 | |------------|------|--------------------|----|--------|----------|--------|-----------|-------------| | Stabilizer | | Agent | | (1992) | | | | | | Glenium | A, F | Based on | <1 | 4.0 | AE 12.4 | Less | AE 0.2 | 4.0 to 6.0 | | 3000 NS | | Glenium Technology | | (1998) | | | | | | (formerly | | | | | | | | | | Rheobuild) | | | | | | | | | | Glenium | A, F | Based on | <1 | 6.0 | AE 36.6 | Less | AE (0.1) | 6.0 to 18.0 | | 3030 NS | | Polycarboxylate | | (2001) | | | | | | | | Technology | | | | | | | | Glenium | A, F | Based on | <1 | 3.5 | AE 26.4 | Less | AE (0.1) | 2.0 to 14.0 | | 3200 HES | | Polycarboxylate | | (2001) | | | | | | | | Technology | | , , | | | | | | Glenium | A, F | Based on | <1 | 4.8 | AE 16.4 | Less | AE 1.1 | 2.0 to 12.0 | | 3400 NV | | Polycarboxylate | | (2004) | | | | | | | | Technology | | | | | | | | Glenium | A, F | Based on | <1 | 4.5 | AE 15.5 | More | AE 0.9 | 3.0 to 12.0 | | 7101 | ŕ | Polycarboxylate | | (2006) | | | | | | | | Technology | | ` , | | | | | | Glenium | A, F | Based on | <1 | 2.6 | AE 11.8 | Less | AE (0.9) | 2.0 to 15.0 | | 7500 | , | Polycarboxylate | | (2007) | | | (/ | | | ,,,,, | | Technology | | (2007) | | | | | | Glenium | A, F | Based on | <1 | 5.4 | AE 12.8 | More | AE (0.0) | 4.0 to 15.0 | | 7700 | 11,1 | Polycarboxylate | 11 | (2007) | 112.12.0 | 1,1510 | 112 (0.0) | 1.0 to 15.0 | | 7700 | | | | (2007) | | | | | | | | Technology | | | | | | | | | | AST | M C494 C | hemical Admix | | | | | |---------------------|--------------|------------------------------------|---------------------------|---|-------------------------|---|--|---| | | | | | | | alifying ASTM d
s are expected re
reference concr | lative to the | Dosage rate suggested by manufacturer | | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | | | <u> </u> | | | | | | | | | Masterpave + (Plus) | A | Polymer,
Triethanolamine | <1 | 3.0
(2005) | AE 5.5 | Less | AE 0.9 | 3.0 to 7.0 | | Masterpave
N | A | Glucose Polymer | <1 | 2.0
(1989) | AE 6.0 | Less | AE 0.4 | 2.0 to 4.0 | | Polyheed
997 | A, F | Lignosulfonate
Triethanolamine | <1 | 5.0
(1990) | AE 6.9 | Less | AE 0.4 | 3.0 to 12.0 | | Polyheed
997 | F | Lignosulfonate,
Triethanolamine | < 1 | 8.0
(1990) | AE 12.3 | Less | AE 0.3 | 3.0 to 12.0 | | Polyheed
1025 | A, F | Glenium Technology | <1 | 4.0 (2003) | AE 9.0 | Less | AE 0.7 | 3.0 to 12.0 | | Polyheed
RI | B, D | Cement Dispersing Agent | <1 | 4.0
(1994) | AE 7.6 | Less | AE 1.25 | 3.0 to 12.0 | | Polyheed
FC 100 | A, C, E | Cement Dispersing Agent | <1 | 9.0 and 15.0
(1998) | AE 6.7 | More | AE (0.7) | 8.0 to 30.0 | | Pozzolith
NC 534 | С | Cement Dispersing Agent | <1 | 27.0
(1993) | AE 5.7 | More | AE (1.7) | 10.0 to 45.0 | | Pozzolith
122 HE | C, E | Cement Dispersing Agent | >24 | 17.0
(1998) | AE 5.5 | More | AE (1.1) | 16.0 to 64.0 | | Pozzolith
200 N | A, B,
D | Cement Dispersing Agent | <1 | 4.0
(1998) | AE 6.9 | Less | AE 0.7 | 3.0 to 5.0 | | Pozzolith
220 N | A, B, | Polymer, Triethanolamine | <1 | 3.5
(1991) | AE 5.8 | Less | AE 1.8 | 2.0 to 5.0 | | Pozzolith
300-R | B, D | Polymer | <1 | 5.0
(1990) | AE 10 | Less | AE 2.6 | 3.0 to 5.0 | | Pozzolith
322-N | A | Polymer,
Triethanolamine | <1 | 4.0
(1990) | AE 8.0 | Less | AE 0.7 | 3.0 to 7.0 | | Pozzolith 80 | A, B, | Cement Dispersing Agent | <1 | 3.0
(1998) | AE 6.8 | Same | AE 0.2 | 4.0 to 10.0 | | Pozzutec
20 | C, E | Polymer | <1 | 15.0
(1990) | AE 5.5 | More | AE 1.1 | 5.0 to 90.0 | | PS 1466 | A, F | Polycarboxylate | <1 | 2.0
(2005) | AE 11.6 | Less | AE 0.6 | 2.0 to 10.0 | | Rheobuild
1000 | A, F | Naphthalene
Sulfonate | <1 | 15.0
(1988) | AE 18 | Less | AE 0.4 | 5.0 to 25.0 | | RMC 121 | A | Lignosulfonate Triethanolamine | <1 | 5.0
(1990) | AE 6.9 | Less | AE 0.4 | 3.0 to 12.0 | | RMC 121 | F | Lignosulfonate Triethanolamine | <1 | 8.0
(1990) | AE 12.3 | Less | AE 0.3 | 3.0 to 12.0 | | Rheocrete
CNI | С | Calcium Nitrite Based | <1 | 1.0
(2001) | AE 4.8 | More | AE (1.5) | 18.5 to 110 | | | | | | | | nalifying ASTM d
es are expected re
reference concre | lative to the | Dosage rate suggested by manufacturer | |-----------------|--------------|----------------------|---------------------------|---|-------------------------|---|--|---| | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | Chryso, Inc. 10600 Hwy 62, Unit #7 Charlestown, Indiana 47111-0459 Tel. No: (404) 406-7966 | 101.110. (404) | | <u> </u> | | | r | I | 1 | | |--------------------|---|---|----|----------------|------|------|---------|-------------| | Chryso
Fluid AG | F | Calcium Salt of
Sulfonated Naphthalene | <1 | 12.4
(2004) | 16.7 | More | AE 0.58 | 4.5 to 5.0 | | | | Formaldehyde | | | | | | | | Chryso | F | Modified | <1 | 11.6 | 15.0 | Less | AE 0.83 | 4.5 to 46.0 | | Fluid | | Polycarboxylate | | (2004) | | | | | | Optima 200 | | | | | | | | | | Chryso | F | Modified | <1 | 9.3 | 19.9 | More | AE 0.50 | 4.5 to 46.0 | | Fluid | | Polycarboxylate | | (2004) | | | | | | Premia 180 | | | | , | | | | | | Chryso | F | Modified | <1 | 8.0 | 19.2 | More | AE 0.25 | 4.5 to 46.0 | | Fluid | | Polycarboxylate | | (2004) | | | | | | Premia 190 | | | | , , | | | | | | Chryso | G | Modified | <1 | 11.0 | 14.5 | More | AE 2.08 | 4.5 to 46.0 | | Fluid | | Polycarboxylate | | (2004) | | | | | | Optima 203 | | | | , , | | | | | | Chryso Plast | D | Hydroxycarboxylate | <1 | 3.6 | 5.7 | Less | AE 2.33 | 3.0 to 9.0 | | CER | | | | (2004) | | | | | | Chryso Plast | A | Modified | <1 | 1.9 | 7.5 | Less | AE 2.33 | 1.5 to 23.0 | | Omega 101 | | Polycarboxylate | | (2004) | | | | | | Chryso Plast | A | Sulfonated | <1 | 7.6 | 8.4 | More | AE 1.17 | 4.5 to 23.0 | | 850 | | Polynapthalene | | (2004) | | | | | | Chryso Tard | В | Lignosulfonate | <1 | 3.2 | 0.4 | Less | AE 2.17 | 3.0 to 15.0 | | CHR | | | | (2004) | | | | | Fritz-Pak Corporation 11220 Grader Street, Suite 600 Dallas, TX 75238 | Delayed Set | B, D | Modified | <1 | 3.0 | AE 7.5 | Less | AE 1.2 | 1.0 to 1.7 | |-------------|------|----------------|----|--------|---------|------|--------|-------------| | | | Lignosulfonate | | (2001) | | | | | | FR-1 | D | Formaldehyde | <1 | 2.5 | AE 7.5 | Less | AE 1.1 | 1.5 to 2.0 | | | | | | (2001) | | | | | | Supercizer | F | Formaldehyde | <1 | 7.0 | AE 12.5 | Less | AE 0.4 | 5.0 to 7.0 | | #1 | | | | (2001) | | | | | | Supercizer | F | Formaldehyde | <1 | 6.0 | AE 14.6 | Less | AE 0.2 | 5.0 to 7.0 | | #5 | | | | (2001) | | | | | | Supercizer | F | Formaldehyde | <1 | 6.0 | AE 15.5 | Less | AE 1.4 | 4.0 to 12.0 | | #7 | | | | (2001) | | | | | 5 #### **ASTM C494 Chemical Admixtures for Concrete** At the qualifying ASTM dosage(s), what changes are expected relative to the Dosage rate suggested by manufacturer reference concrete? Change in Product ASTM Class or composition Chloride Dosage rates Water Initial set fl. oz. per 100 reduction type retardation, name content* used to qualify AEA dose lbs of cement or (acceleration) for appropriate ASTM tests**, needed to cementitious hours maintain air material fl. oz. Per 100 content lbs. of cement (report date) The Euclid Chemical Company 19218 Redwood Road Cleveland, OH 44110-2799 | Tel. | No: | (216) | 531-9222 | |------|-----|-------|----------| | | | | | | Accelguard | E | Calcium Chloride based | 31-35 | 24.0 | AE 6.3 | More | AE (1.5) | 16 to 32 | |--------------|-------|---|-----------|---------------|----------|------|------------|--------------| | HE | | Material | | (1997) | | | , , | | | Accelguard | C, E | Calcium Nitrate | <1 | 6.0 | AE 9.1 | More | AE (1.1) | 4.0 to 75 | | NCA | | | | (2002) | | | | | | Accelguard | C, E | Calcium Nitrate | <1 | 60.0 | AE 14.5 | More | AE (2.3) | 10 to 90 | | 90 | | | | (2005) | | | | | | Eucon A+ | A | Calcium Nitrate -
Sodium Thiocyanate | <1 | 6.0
(2007) | AE 5.8 | Less | AE (0.0) | 3.0 to 8.0 | | Eucon ACN | C, E | Blend of Admixtures | <1 | 60.0 | AE 8.6 | More | AE (1.6) | 20.0 to 50.0 | | Eucon / ICIV | C, L | Biena of Hamixtures | \1 | (1998) | 712 0.0 | More | 712 (1.0) | 20.0 to 30.0 | | Eucon ACN | C, E | Calcium Nitrate | <1 | 50.0 | AE 6.5 | More | AE (3.4) | 10.0 to 60.0 | | 200 | | | | (1999) | | | | | | Eucon CIA | C, E | Calcium Nitrite | <1 | 6.2 | AE 6.7 | More | AE (1.9) | 45 to 135 | | | | | | (2004) | | | | | | Eucon DS | В | Phosphate Salts | <1 | 4.0 | AE 3.0 | Less | AE 1.2 | | | | | | | (1998) | | | | | | Eucon HC | Α, Β, | Carbohydrate Salts | <1 | 2.5 | AE 6.5 | Same | AE 0.6 | 2 to 6 | | | D | | | (1998) | AE 7.3 | Same | AE 2.0 | | | Eucon HW | A | Lignin Family | <1 | 6.0
(1998) | AE 6.9 | Less | AE 1.0 | 3 to 10 | | Eucon LR | A, D | Lignosulfonate | <1 | 6.0 | AE 8.0 | Less | AE (1.1) | 4.0 to 6.0 | | | | | | (1997) | | | | | | Eucon LW | A | Lignin Family | <1 | 3.0 | AE 9.5 | Less | AE 0.3 | 3 to 10 | | | | | | (1997) | | | | | | Eucon | A | Calcium Nitrate & | <1 | 6.0 | AE 7.1 | Same | AE 1.1 | 4 to 10 | | MR | | Calcium Lignosulfonate | | (1999) | | | | | | Eucon NR | A, D | Lignosulfonate | <1 | 3.0 | AE 6.7 | Less | AE (1.2) | 3.0 to 6.0 | | | | Based Material | | (1997) | | | | | | Eucon NW | A, D | Lignosulfonate | <1 | 3.0 | AE 7.5 | Less | AE (0.2) | 3.0 to 6.0 | | E DD1 | F. C | Based Material | .1 | (1997) | AF 15.0 | | A.E. (1.0) | 60.000 | | Eucon RD1 | F, G | Sulfonated | <1 | 4.0 | AE 15.3 | Same | AE (1.0) | 6.0 to 20.0 | | | | Naphthalene
Formaldehyde | | (1990) | | | | | | Eucon SP | A, F | Sulfonated Napthalene | <1 | 7.0 | AE 17.1 | More | AE (0.2) | 6.0 to 25.0 | | Eucon SF | А, Г | Formaldehyde | <1 | (1998) | AE 17.1 | More | AE (0.2) | 0.0 to 23.0 | | | | Condensate | | (1770) | | | | | | Eucon SPC | A, F | Polycarboxylated | <1 | 5.0 | AE 13.2 | Same | AE (0.1) | 3.0 to 6.0 | | Zucon bi C | , . | Polymer | ~1 | (2001) | 112 13.2 | Sumo | 112 (0.1) | 5.0 10 0.0 | | | | & other additives | | (=001) | | | | | | | | | | | change | alifying ASTM d
es are expected re
reference concre | lative to the | Dosage rate suggested by manufacturer | |--------------------------|--------------|--|---------------------------|---|-------------------------|---|--|---| | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | | Eucon SPJ | A, F | Polycarboxylate
Polymer | <1 | 7.0
(2001) | AE 12.9 | Same | AE 0.8 | 4.0 to 7.0 | | Eucon TR | B, D | Carbohydrate Salts | <1 | 4.0
(1998) | AE 6.8 | Less | AE 3.1 | 3 to 6 | | Eucon
WR | A | Calcium-Sodium
Lignosulfonate | <1 | 5.0
(1997) | AE 8.3 | Less | AE 0.5 | 4 to 5 | | Eucon
WR-91 | A | Calcium Lignosulfonate | <1 | 3.0
(1999) | AE 6.4 | Less | AE 0.6 | 2 to 6 | | Eucon X-15 | A | Lignosulfonate
Based Material | <1 | 4.0
(1993) | AE 5.4 | Less | AE (0.1) | 3.0 to 10.0 | | Eucon X-20 | A, F | Lignin Family | <1 | 13.0
(2002) | AE 12.3 | Less | AE 1.1 | 3.0 to 15.0 | | Eucon 37 | A, F | Napthalene Sulfonate | <1 | 16.0
(1999) | AE 18.31 | Same | AE 0.7 | 10 to 16 | | Eucon 537 | A | Napthalene Sulfonate | <1 | 16.0
(2003) | AE 15.3 | Less | AE 1.60 | 6 to 14 | | Eucon 1037 | F | Napthalene-Sulfonic acud | <1 | 16.0
(2006) | AE 14.7 | More | AE 1.1 | 10 to 25 | | Eucon Pro-
Finish | A | Calcium
Nitrate/Sodium
Thiocyanate | <1 | 3.0
(2005) | AE 8.5 | Less | AE (0.30) | 3.0 to 5.0 | | Eucon
Retarder
100 | D | Sodium Gluconate | <1 | 3.0
(1999) | AE 6.4 | Less | AE 1.9 | 2 to 6 | | Plastol 341 | A, F | Polycarboxylate Resin | <1 | 5.7
(2008) | AE 14.3 | Less | AE 0.1 | 2 to 10 | | Plastol 341
S | A, F | Polycarboxylate Resin | <1 | 8.0
(2004) | AE 16.4 | Less | AE 0.4 | 2 to 10 | | Plastol 5000 | F | Polycarboxylate Resin | <1 | 5.0
(2007) | AE 13.8 | Less | AE (0.4) | 3 to 15 | | Plastol 5500 | F | Polycarboxylate Resin | <1 | 5.0
(2005) | AE 14.2 | Less | AE (0.1) | 3 to 8 | | Plastol 5700 | F | Polycarboxylate Resin | <1 | 4.0
(2006) | AE 15.9 | Less | AE (0.4) | 2 to 6 | | Plastol 6200
EXT | F | Methacrylic Acid Polymer | <1 | 8.0
(2008) | AE 15.4 | More | AE 0.80 | 3.0 to 12.0 | Hill Brothers Chemical Company 1675 N. Main Street Orange, CA 92667-3442 | HICO | A | Sodium Lignosulfonate | <1 | 5.0 | NAE 5.7 | Not Tested for | NAE (1) | 5.0 to 12 | |------|---|-----------------------|-----|--------|---------|----------------|-----------|-----------| | 610 | | | | (1987) | | AE Concrete | | | | HICO | C | Polymer Modified | >33 | 24.0 | NAE 2.7 | Not Tested for | NAE (2.0) | 32 to 64 | | 911 | | Calcium Chloride | | (1992) | | AE Concrete | | | | | | | | | | nalifying ASTM d
es are expected re
reference concre | lative to the | Dosage rate
suggested by
manufacturer | |-----------------|--------------|----------------------|---------------------------|---|-------------------------|--|--|---| | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in AEA dose needed to maintain air content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | PRO MIX Technologies P. O. Box 6 Allen, TX 75013 (214) 448-1891 | Propel | F | Polymer | <1 | 6.4 | 11.9 | Less | AE (0.2) | 2.0 to 6.4 | |--------|---|---------|----|--------|------|------|----------|------------| | HRHE | | | | (2001) | | | | | Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 | Lyndhurst, NJ | 0/0/1 | | | | | | | | |----------------------------|-------|-----------------------------------|----|----------------|---------|------|-----------|--------------| | Plastocrete
161 | A | Lignosulfonate | <1 | 4.0
(1982) | AE 7.7 | Same | AE 0.2 | 3.0 to 5.0 | | Plastocrete
161 HE | С | Calcium Chloride
Triethylamine | >5 | 34.0
(1978) | AE 1.3 | Less | AE (1.0) | 6.0 to 64.0 | | Plastocrete
161 MR | B, D | Lignosulfonates | <1 | 2.9
(1989) | AE 7.4 | Same | AE 2.4 | 3.0 to 6.0 | | Plastocrete
169 | A | Lignosulfonates | <1 | 4.0
(1985) | AE 8.73 | Same | AE (0.25) | 3.0 to 7.0 | | Plastocrete
169 | B, D | Lignosulfonates | <1 | 6.0
(1986) | AE 22 | Same | AE 2.3 | 3.0 to 7.0 | | Plastiment | B, D | Hydroxylated
Carboxylic Acid | <1 | 4.0
(1990) | AE 7.3 | Same | AE 3.1 | 2.0 to 4.0 | | Sika CNI | С | Calcium Nitrate Based | <1 | 19.0
(2000) | AE 2.9 | Same | AE 1.1 | 15 to 120 | | Sikament
MP | A, F | Polycarboxylate | <1 | 15.9
(2000) | AE 12.9 | Same | AE (0.1) | 3.0 to 16.0 | | Sikament
686 | A, F | Triethanolamine | <1 | 6.5
(2005) | AE 18.6 | Less | AE (1.0) | 3.0 to 18.0 | | Sikaplast 500 | A,F | Polymer Solution | <1 | 3.5
(2008) | AE 6.6 | Less | AE 0.7 | 3.0 to 12.0 | | Sika Rapid 1 | С | RMF-1503 | <1 | 20.0
(1996) | AE 3.1 | Less | AE (1.6) | 4.0 to 48.0 | | Sika Set NC | C, E | Calcium Nitrate | <1 | 24.0
(2005) | AE 13.0 | Less | AE 1.7 | 10.0 to 45.0 | | Sika
ViscoCrete
2100 | A, F | Polycarboxylate | <1 | 4.7
(2005) | AE 22.3 | Less | AE (0.3) | 2.0 to 12.0 | | Sika
ViscoCrete
4100 | A, F | Polycarboxylate | <1 | 3.6
(2005) | AE 18.6 | Less | AE (0.9) | 3.0 to 12.0 | | Sika
ViscoCrete
6100 | A, F | Polycarboxylate
Polymer | <1 | 6.0
(2003) | AE 23.4 | Less | AE (0.8) | 3.0 to 8.0 | | | | | | | | alifying ASTM d
es are expected re
reference concre | lative to the | Dosage rate
suggested by
manufacturer | |-----------------|--------------|----------------------|---------------------------|---|-------------------------|---|--|---| | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | Specco Industries 13087 Main Street Lemont, IL 60439 Tel. No: (630) 257-5060 | Auger Aid | A | Lignosulfonate | <1 | 8.0 | 7.0 | Less | AE (0.1) | 8.0 to 16.0 | |-----------|---|----------------|----|--------|-----|------|----------|-------------| | #1920 | | | | (2004) | | | | ļ | W. R. Grace and Company 7237 East Gage Ave. Los Angeles, CA 90040 | Los Angeles, C | A 90040 | | | | | | | | |----------------|---------|---------------------------|----|---------------|----------------------------------|------|------------|-------------| | ADVA Cast | F | Carboxylated
Polyether | <1 | 6.3
(1997) | AE 15.3 | More | AE 1.4 | 3.0 to 12.0 | | ADVA Cast | F | Polycarboxylate | <1 | 10.0 | AE 23.6 | Less | AE 1.0 | 8.0 to 20.0 | | 555 | - | 1 ory cure orry ruce | 12 | (2006) | 112 2010 | 2000 | 112 110 | 0.0 10 20.0 | | ADVA Cast | F | Carboxylated | <1 | 2.2 | AE 14.9 | Less | AE (1.0) | 2.0 to 10.0 | | 575 | | Polyether | | (2007) | | | | | | ADVA Flex | A, F | Polycarboxylate | <1 | 6.2 | AE 14.0 | Less | AE 0.67 | 4.0 to 14.0 | | | | | | (2006) | | | | | | ADVA | F | Carboxylated | <1 | 6.0 | AE 12.8 | More | AE 1.1 | 3.0 to 12.0 | | Flow | | Polyether | | (1995) | | | | | | ADVA | F | Carboxylated | <1 | 5.2 | AE 15.5 | More | AE 0.0 | 3.0 to 10.0 | | 100 | | Polyether | | (1999) | | | | | | ADVA 140 | A, F | Carboxylated | <1 | 4.2 | AE 5.6 | More | AE 0.3 | 4.0 to 20.0 | | | | Polyether | | (2002) | | | | | | ADVA | F | Carboxylated | <1 | 9.4 | AE 14.5 | More | AE 0.3 | 9.0 to 16.0 | | 140M | | Polyether | | (2007) | | | | | | ADVA 170 | F | Carboxylated | <1 | 4.5 | AE 12.3 | More | AE 0.4 | 3.0 to 9.0 | | | | Polyether | | (2003) | | | | | | ADVA 190 | F | Polyacrylate | <1 | 4.9 | AE 13.2 | Less | AE (0.1) | 3.0 to 9.0 | | | | | | (2007) | | | | | | ADVA Cast | F | Carboxylated Polymer | <1 | 6.1 | AE 11.9 | More | AE 0.3 | 3.0 to 12.0 | | 500 | | | | (2001) | + | | | | | ADVA Cast | F | Carboxylated Polymer | <1 | 4.0 | AE 16.3 | Less | AE 0.6 | 3.0 to 10.0 | | 530 | | | | (2002) | + . - . - - | | | | | ADVA Cast | F | Carboxylated Polymer | <1 | 6.0 | AE 13.5 | Less | AE 0.6 | 5.0 to 20.0 | | 540 | | | | (2002) | + | | | | | Daracem 50 | A | Lignin, Calcium | >8 | 5.0 | AE 7.6 | Less | Negligible | 5.0 to 7.0 | | | | Chloride, and | | (1992) | | | | | | Domog 5.5 | ^ | Polymers | | 4.0 | AE 5 9 | I | AFOO | 204-00 | | Daracem 55 | A | Lignin,
Calcium/Sodium | <1 | 4.0 | AE 5.8 | Less | AE 0.9 | 3.0 to 9.0 | | | | Nitrate, Polymer | | (1992) | | | | | | | | mitrate, Polymer | | | | | | | | | | ASI | VI C494 C | hemical Admix | | | | D | |-------------------|--------------|--|---------------------------|---|-------------------------|---|--|---| | | | | | | | alifying ASTM d
es are expected re
reference concr | lative to the | Dosage rate suggested by manufacturer | | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | | | l | | | | | _ | 1 | T | | Daracem
100 | A, F, G | Naphthalene
Sulfonate | <1 | 8.0
(1991) | AE 11.5 | Less | AE 0.3 | 9.0 to 11.0 | | Daracem
ML 330 | F | Melamine-
Formaldehyde
Polymer | <1 | 14.5
(1998) | AE 15.4 | More | AE 1.2 | 6.0 to 25.0 | | Daracem 19 | A, F | Naphthalene-Sulfonate
Formaldehyde
Copolymer | <1 | 8.0 to 25.0
(1981) | AE 20 to 30 | Less | AE
0.5 to 1.0 | 8.0 to 25.0 | | Daracem 65 | A | Lignosulfonates, Melamine Polymer and Amine | <1 | 5.8 | AE 6.7 | Less | AE 0.7 | 3.0 to 9.0 | | Daraset 200 | С | Calcium Nitrate/Nitrite Based Solution | <1 | 30.0
(1998) | AE 8.3 | More | AE (2.6) | 10 to 100 | | Daraset 400 | С | Calcium Nitrate
Solution | <1 | 14.0
(2004) | AE 0.0 | Less | AE (1.2) | 10 to 100 | | Daraset
HES | С | Calcium Nitrite Solution | <1 | 20.0
(2008) | AE 5.2 | Same | AE 1.1 | 8 to 30 | | Daratard 17 | B, D | Hydroxylated Organic
Compounds | <1 | 3.0
(1992) | AE 8 | More | AE 2.0 | 2.0 to 7.0 | | DCI | С | Calcium Nitrite Aqueous Solution | <1 | 78.0
(1979) | Negligibl
e | Same | AE (2.0) | 50.0 to 170.0 | | EXP 950 | F | Carboxylated
Polyether | <1 | 2.2 (2007) | AE 14.9 | Less | AE (1.0) | 2.0 to 10.0 | | Mira 35 | A | Lignosulfonate and Nitrite | <1 | 5.0
(2005) | AE 5.2 | Less | AE 0.2 | 3.0 to 12.0 | | Mira 70 | A, F | Carboxylated
Polyether | <1 | 12.0
(1999) | AE 12.0 | More | AE 0.7 | 2.5 to 15.0 | | Mira 85 | A, F | Sodium Formate | <1 | 10.0
(2007) | AE 14.5 | Less | AE 1.5 | 3.0 to 12.0 | | Mira 92 | A, F | Carboxylated
Polyether | <1 | 5.0
(2004) | AE 4.9 | Same | AE (0.2) | 2.5 to 15.0 | | Polarset | С | Calcium Nitrate/
Nitrite Solution | <1 | 30.0
(1994) | AE 5 | Same | AE (3.0) | 8.0 to 100.0 | | Recover | D | Hydroxycarboxylic Acid Salts | <1 | 5.0
(1992) | AE 9.0 | Same | AE 1.7 | 2.0 to 16.0 | | WRDA 20 | A | Glucose Polymers,
Lignosulfonate, and
Amine | <1 | 2.5
(1985) | AE 6.8 | Less | AE 1.0 | 2.5 | | WRDA 27 | A, D | Modified Glucose Polymer | <1 | 3.0
(2003) | AE 6.7 | More | AE 0.5 | 2.0 to 6.0 | | WRDA 64 | A | Lignosulfonate, Amine, and Glucose Polymer | <1 | 3.0
(1979) | AE 11 | Less | AE 1.4 | 3.0 to 5.0 | | | | AST | M C494 C | hemical Admix | tures for (| Concrete | | | |-----------------|--------------|---|---------------------------|---|-------------------------|---|--|---| | | | | | | | alifying ASTM des are expected re
reference concre | lative to the | Dosage rate
suggested by
manufacturer | | Product
name | ASTM
type | Class or composition | Chloride
content*
% | Dosage rates
used to qualify
for appropriate
ASTM tests**,
fl. oz. Per 100
lbs. of cement
(report date) | Water
reduction
% | Change in
AEA dose
needed to
maintain air
content | Initial set
retardation,
(acceleration)
hours | fl. oz. per 100
lbs of cement or
cementitious
material | | WRDA 79 | A, D | Modified Lignosulfonate | <1 | 5.0 to 7.5
(1980) | AE 8 to | Less | AE
1.0 to 2.2 | 4.0 to 10.0 | | WRDA 82 | A | Lignosulfonate & Amine | <1 | 3.0
(1983) | AE 6.1 | Less | AE 0.2 | 3.0 | | WRDA
w/Hycol | A | Organic Compounds
w/Hydration Control
Agent | <1 | 3.0 and 5.0
(1974) | AE 5 to 7 | Less | AE (0.3) to 1.3 | 3.0 to 5.0 | | Zyla 610 | A | Carbohydrates & Amine | <1 | 3.3
(2008) | AE 7.9 | Same | AE 0.1 | 2.0 to 4.0 | ## **ASTM C260 Air-Entraining Admixtures for Concrete** | Product name | Class or composition | Chloride content* | Date report was submitted | Dosage rate suggested by manufacturer, fl. oz. per 100 lbs of cement | |--------------|----------------------|-------------------|---------------------------|--| | | | % | | _ | Axim Italcementi Group P.O. Box 234 8282 Middlebranch Road Middlebranch, OH 44652 Tel. No: (330) 966-0444 | Catexol | Tall Oil & | <1 | 2000 | 0.1 to 6.0 | |---------|------------------|----|------|------------| | | Diethyleneglycol | | | | BASF Admixtures, Inc. 23700 Chagrin Boulevard Cleveland, OH 44122 Tel. No: (216) 839-7500 | 1011101 (210) 009 | 1800 | | | | |-------------------|------------------|----|------|-------------| | MBVR Standard | Vinsol Resin | <1 | 1991 | 0.4 to 4.0 | | MB-VR | Vinsol Resin | <1 | 1992 | 0.4 to 4.0 | | Concentrated | | | | | | MBAE-90 | Rosin Soap | <1 | 1993 | 0.25 to 4.0 | | (also called | | | | | | Pave Air 90) | | | | | | Micro-Air | Fatty acid Salts | <1 | 1991 | 1.0 | | Pave-Air | Vinsol Resin | <1 | 1992 | 1.0 | Chryso, Inc. 10600 Hwy 62, Unit #7 Charlestown, Indiana 47111-0459 Tel. No: (404) 406-7966 | Chryso Air NVR | Neutralized Wood Resin | <1 | 2004 | 0.3 to 7.5 | |----------------|------------------------|----|------|-------------| | Chryso Air R2 | | <1 | 2004 | 0.3 to 15.0 | The Euclid Chemical Company 19218 Redwood Road Cleveland, OH 44110-2799 | AEA-92 | | <1 | 1992 | 0.50 to 1.0 | |--------------|------------------|----|------|-------------| | Eucon Air 40 | Resin Surfactant | <1 | 1997 | 1.0 | | Air Mix | Vinsol Resin | <1 | 2004 | 0.5 to1.0 | Fritz-Pak Corporation 11220 Grader Street, Suite 600 Dallas, TX 75238 | | _ m=m, === +e=e= | | | | | | |---|------------------|--|----|------|--------------|--| | ĺ | Air Plus | | <1 | 2001 | 0.25 to 1.25 | | | | Super Air Plus | | <1 | 2001 | 0.25 to 1.25 | | # **ASTM C260 Air-Entraining Admixtures for Concrete** | Product name | Class or composition | Chloride content* | Date report was submitted | Dosage rate suggested by manufacturer, fl. oz. per 100 lbs of cement | |--------------|----------------------|-------------------|---------------------------|--| | | | % | | | Hill Brothers Chemical Company 1675 North Main St Orange, CA 92667-3442 | HICO-315-L | Sodium Tall Oil Fatty Acid | <1 | 1968 | 0.75 to 3.0 | |------------|----------------------------|----|------|-------------| | | Soap | | | | #### W. R. Grace and Company 7237 East Gage Ave. Los Angeles, CA 90040 | 203 Migeles, CM 70040 | | | | | |-----------------------|---|----|------|-------------| | Darex AEA | Organic Acid Salts | <1 | 1975 | 0.8 | | Darex II AEA | Alkaline Solution of Fatty
Acid Salts | <1 | 1993 | 0.75 to 3.0 | | Daravair 1000 | Neutralized Resin and
Rosin | <1 | 1994 | 0.75 to 3.0 | | Daravair M | Neutralized Vinsol Resin | <1 | 1975 | 1.0 | | Daravair AT 60 | Aqueous Solution of
Neutralized Vinsol Resin,
Amine and Fatty Acids | <1 | 1994 | 0.5 to 3.0 | Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 | Sika AEA 15 | Sodium Salt Type Soap | <1 | 1983 | 0.5 to 1.5 | |-------------|-----------------------|----|------|------------| | Sika Air | Resin Solution | <1 | 2003 | 0.5 to 3.0 | | Com | pany name | Classification of mineral admixtures | Typical calcium oxide range in mineral admixture, % | |------------|---|--------------------------------------|---| | Fly | <u>Ash</u> | | | | (1) | Boral Materials Technology
45 NE Loop 410
Suite 700
San Antonio, TX 78216 | | | | | (a) Monticello Fly Ash (Monticello, Texas) | F | 7.1 to 8.0 | | | (b) Craig Fly Ash (Craig, CO) | F | 5.7 to 9.6 | | | (c) Irvington Station Fly Ash (Tuscon, AZ) | F | 7.6 to 9.1 | | | (d) Snowflake Fly Ash (Snowflake, AZ) | F | 4.8 to 7.1 | | 2) | Headwater Resources, Inc.
10653 S. Riverfront Parkway
South Jordan, UT 84095 | | | | | (a) Centralia Fly Ash (Centralia, Washington) | F | 7.6 to 8.0 | | | (b) IPSC/Delta Fly Ash (Delta, Utah) | F | 9.1 to 9.9 | | | (c) Hunter Fly Ash (Castle Dale, Utah) | F | 7.9 to 9.9 | | | (d) Navajo Fly Ash | F | 6.5 to 8.0 | | | (e) Jim Bridger Fly Ash (Rock Spring, Wyoming) | F | 6.2 to 7.5 | | 3) | Salt River Materials Group
Phoenix Cement Company
8800 East Chaparral Road, Suite 155
Scottsdale, AZ 85250-2618
Tel. No: (480) 850-5757 | | | | | (a) Cholla Fly Ash (Joseph City, Arizona) | F | 3.1 to 5.0 | | | (b) Four Corners Fly Ash (Fruitland, New Mexico) | F | 2.4 to 2.8 | | | (c) Escalante Fly Ash (Prewit, New Mexico) | F | 2.5 to 4.8 | | | (d) San Juan Fly Ash (San Juan, Waterflow, New Mexico) | F | 5.8 to 7.8 | | | (d) San Juan Fly Ash (San Juan, Waterflow, New Mexico) | F | 5.8 to 7.8 | | | (e) Gallup Fly Ash (commingled fly ash made up of Four Corners Fly Ash and San Juan Fly Ash) | F | 4.1 to 9.4 | | !) | Mineral Resources Technologies, LLC
120 Interstate North Parkway East, Suite 440
Atlanta, GA 30339 | | | | | (a) Coronado Fly Ash (St. John, Arizona) | F | 2.6 to 5.0 | | Com | pany name | Classification of mineral | Typical calcium oxide range in mineral | |------|--|--|--| | | | admixtures | admixture, % | | j) | Enx Inc.
9429 148th Street
Edmonton, AB Canada
Tel. No: (780) 454-4199 | | | | | (a) Genessee Fly Ash | F | 4.2 to 5.6 | | Ingi | : Fly ash suppliers should provide the Calcium Oxide neer. The requirement for CaO is 10% maximum. Thent is 1.5% maximum in fly ash, per Caltrans Standard | e "total" alkaline content requirement is 5% | | | | wastern Pozzolans | | | |) | Western Pozzolan Corp.
1748 Senecio Drive
Larkspur, CO 80118 | | | | | (a) Lassenite SR | N | 2.3 | | 2) | Engelhard Corp. Pigments & Additives Group 101 Wood Avenue P.O. Box 770 Iselin, NJ 08830 | | | | | (a) MetaMax EF
High Reactivity Meta Kaolin | N | <1 | | ` | Advanced Cement Technologies
435 Martin Street, Suite 2040
Blaine, WA 98231 | | | | , | | N | <1 | | 6) | (a) Power Pozz
High Reactivity Metakaolin | | | |) | | | | # ASTM C 1240 Silica fume | Company name | | Product name | |--------------|--|--------------------------| | Silica | 1 Fume | • | | (1) | BASF Admixtures, Inc.
23700 Chagrin Boulevard
Cleveland, OH 44122-5554
(216) 839-7500 | Rheomac SF 100 Densified | | (2) | W.R. Grace & Company
62 Whittenmore Avenue
Cambridge, MA 02140-1692
(617) 498-4555 | Force 10,000 D Densified | | (3) | The Euclid Chemical Company
19218 Redwood Road
Cleveland, Ohio 44110 | Eucon MSA | Sikacrete 950 DP Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 (4)